268 research outputs found

    An Aquaculture-Based Method for Calibrated Bivalve Isotope Paleothermometry

    Get PDF
    To quantify species- specific relationships between bivalve carbonate isotope geochemistry ( delta O-18(c)) and water conditions ( temperature and salinity, related to water isotopic composition [delta O-18(w)]), an aquaculture-based methodology was developed and applied to Mytilus edulis ( blue mussel). The four- by- three factorial design consisted of four circulating temperature baths ( 7, 11, 15, and 19 degrees C) and three salinity ranges ( 23, 28, and 32 parts per thousand ( ppt); monitored for delta O-18(w) weekly). In mid- July of 2003, 4800 juvenile mussels were collected in Salt Bay, Damariscotta, Maine, and were placed in each configuration. The size distribution of harvested mussels, based on 105 specimens, ranged from 10.9 mm to 29.5 mm with a mean size of 19.8 mm. The mussels were grown in controlled conditions for up to 8.5 months, and a paleotemperature relationship based on juvenile M. edulis from Maine was developed from animals harvested at months 4, 5, and 8.5. This relationship [ T degrees C = 16.19 (+/- 0.14) - 4.69 (+/- 0.21) {delta O-18(c) VPBD - delta O-18(w) VSMOW} + 0.17 (+/- 0.13) {delta O-18(c) VPBD - delta O-18(w) VSMOW}(2); r(2) = 0.99; N = 105; P \u3c 0.0001] is nearly identical to the Kim and O\u27Neil ( 1997) abiogenic calcite equation over the entire temperature range ( 7 - 19 degrees C), and it closely resembles the commonly used paleotemperature equations of Epstein et al. ( 1953) and Horibe and Oba ( 1972). Further, the comparison of the M. edulis paleotemperature equation with the Kim and O\u27Neil ( 1997) equilibrium- based equation indicates that M. edulis specimens used in this study precipitated their shell in isotopic equilibrium with ambient water within the experimental uncertainties of both studies. The aquaculture- based methodology described here allows similar species- specific isotope paleothermometer calibrations to be performed with other bivalve species and thus provides improved quantitative paleoenvironmental reconstructions

    Experimental Determination of Salinity, Temperature, Growth, and Metabolic Effects on Shell Isotope Chemistry of Mytilus Edulis Collected from Maine and Greenland

    Get PDF
    To study the effects of temperature, salinity, and life processes (growth rates, size, metabolic effects, and physiological/ genetic effects) on newly precipitated bivalve carbonate, we quantified shell isotopic chemistry of adult and juvenile animals of the intertidal bivalve Mytilus edulis (Blue mussel) collected alive from western Greenland and the central Gulf of Maine and cultured them under controlled conditions. Data for juvenile and adult M. edulis bivalves cultured in this study, and previously by Wanamaker et al. (2006), yielded statistically identical paleotemperature relationships. On the basis of these experiments we have developed a species-specific paleotemperature equation for the bivalve M. edulis [T degrees C = 16.28 (+/- 0.10) -4.57 (+/- 0.15) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW} + 0.06 (+/- 0.06) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW}(2); r(2) = 0.99; N = 323; p \u3c 0.0001]. Compared to the Kim and O\u27Neil (1997) inorganic calcite equation, M. edulis deposits its shell in isotope equilibrium (delta(18)O(calcite)) with ambient water. Carbon isotopes (delta(13)C(calcite)) from sampled shells were substantially more negative than predicted values, indicating an uptake of metabolic carbon into shell carbonate, and delta(13)C(calcite) disequilibrium increased with increasing salinity. Sampled shells of M. edulis showed no significant trends in delta(18)O(calcite) based on size, cultured growth rates, or geographic collection location, suggesting that vital effects do not affect delta(18)O(calcite) in M. edulis. The broad modern and paleogeographic distribution of this bivalve, its abundance during the Holocene, and the lack of an intraspecies physiologic isotope effect demonstrated here make it an ideal nearshore paleoceanographic proxy throughout much of the North Atlantic Ocean

    Comparative Brain Morphology of the Greenland and Pacific Sleeper Sharks and its Functional Implications

    Get PDF
    In cartilaginous fishes, variability in the size of the brain and its major regions is often associated with primary habitat and/or specific behavior patterns, which may allow for predictions on the relative importance of different sensory modalities. The Greenland (Somniosus microcephalus) and Pacific sleeper (S. pacificus) sharks are the only non-lamnid shark species found in the Arctic and are among the longest living vertebrates ever described. Despite a presumed visual impairment caused by the regular presence of parasitic ocular lesions, coupled with the fact that locomotory muscle power is often depressed at cold temperatures, these sharks remain capable of capturing active prey, including pinnipeds. Using magnetic resonance imaging (MRI), brain organization of S. microcephalus and S. pacificus was assessed in the context of up to 117 other cartilaginous fish species, using phylogenetic comparative techniques. Notably, the region of the brain responsible for motor control (cerebellum) is small and lacking foliation, a characteristic not yet described for any other large-bodied (\u3e3 m) shark. Further, the development of the optic tectum is relatively reduced, while olfactory brain regions are among the largest of any shark species described to date, suggestive of an olfactory-mediated rather than a visually-mediated lifestyle

    Evolving Surgical Approaches to Bicuspid Aortic Valve Associated Aortopathy

    Get PDF
    Bicuspid aortic valve (BAV) is the most common congenital cardiac pathology which results from the fusion of two adjacent aortic valve cusps. It is associated with dilatation of the aorta, known as bicuspid valve-associated aortopathy or bicuspid aortopathy. Bicuspid aortopathy is progressive and is linked with adverse clinical events. Hence, frequent monitoring and early intervention with prophylactic surgical resection of the proximal aorta is often recommended. Over the past two decades resection strategies and surgical interventions have mainly been directed by surgeon and institution preferences. These practices have ranged from conservative to aggressive approaches based on aortic size and growth criteria. This strategy, however, may not best reflect the risks of important aortic events. A new set of guidelines was proposed for the treatment of bicuspid aortopathy. Herein, we will highlight the most recent findings pertinent to bicuspid aortopathy and its management in the context of a case presentation

    Enhanced Detection of Desmoplasia By Targeted Delivery of Iron Oxide Nanoparticles To the Tumour-Specific Extracellular Matrix

    Get PDF
    Diagnostic imaging of aggressive cancer with a high stroma content may benefit from the use of imaging contrast agents targeted with peptides that have high binding affinity to the extracellular matrix (ECM). In this study, we report the use of superparamagnetic iron-oxide nanoparticles (IO-NP) conjugated to a nonapeptide, CSGRRSSKC (CSG), which specifically binds to the laminin-nidogen-1 complex in tumours. We show that CSG-IO-NP accumulate in tumours, predominantly in the tumour ECM, following intravenous injection into a murine model of pancreatic neuroendocrine tumour (PNET). In contrast, a control untargeted IO-NP consistently show poor tumour uptake, and IO-NP conjugated to a pentapeptide. CREKA that bind fibrin clots in blood vessels show restricted uptake in the angiogenic vessels of the tumours. CSG-IO-NP show three-fold higher intratumoral accumulation compared to CREKA-IO-NP. Magnetic resonance imaging (MRI) T2-weighted scans and T2 relaxation times indicate significant uptake of CSG-IO-NP irrespective of tumour size, whereas the uptake of CREKA-IO-NP is only consistent in small tumours of less than 3 mm in diameter. Larger tumours with significantly reduced tumour blood vessels show a lack of CREKA-IO-NP uptake. Our data suggest CSG-IO-NP are particularly useful for detecting stroma in early and advanced solid tumours

    Experimental Determination of Salinity, Temperature, Growth, and Metabolic Effects on Shell Isotope Chemistry of Mytilus edulis Collected from Maine and Greenland

    Get PDF
    To study the effects of temperature, salinity, and life processes (growth rates, size, metabolic effects, and physiological/ genetic effects) on newly precipitated bivalve carbonate, we quantified shell isotopic chemistry of adult and juvenile animals of the intertidal bivalve Mytilus edulis (Blue mussel) collected alive from western Greenland and the central Gulf of Maine and cultured them under controlled conditions. Data for juvenile and adult M. edulis bivalves cultured in this study, and previously by Wanamaker et al. (2006), yielded statistically identical paleotemperature relationships. On the basis of these experiments we have developed a species-specific paleotemperature equation for the bivalve M. edulis [T degrees C = 16.28 (+/- 0.10) -4.57 (+/- 0.15) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW} + 0.06 (+/- 0.06) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW}(2); r(2) = 0.99; N = 323; p \u3c 0.0001]. Compared to the Kim and O\u27Neil (1997) inorganic calcite equation, M. edulis deposits its shell in isotope equilibrium (delta(18)O(calcite)) with ambient water. Carbon isotopes (delta(13)C(calcite)) from sampled shells were substantially more negative than predicted values, indicating an uptake of metabolic carbon into shell carbonate, and delta(13)C(calcite) disequilibrium increased with increasing salinity. Sampled shells of M. edulis showed no significant trends in delta(18)O(calcite) based on size, cultured growth rates, or geographic collection location, suggesting that vital effects do not affect delta(18)O(calcite) in M. edulis. The broad modern and paleogeographic distribution of this bivalve, its abundance during the Holocene, and the lack of an intraspecies physiologic isotope effect demonstrated here make it an ideal nearshore paleoceanographic proxy throughout much of the North Atlantic Ocean

    Sensory Input Pathways and Mechanisms in Swallowing: A Review

    Get PDF
    Over the past 20 years, research on the physiology of swallowing has confirmed that the oropharyngeal swallowing process can be modulated, both volitionally and in response to different sensory stimuli. In this review we identify what is known regarding the sensory pathways and mechanisms that are now thought to influence swallowing motor control and evoke its response. By synthesizing the current state of research evidence and knowledge, we identify continuing gaps in our knowledge of these mechanisms and pose questions for future research
    corecore